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Disclaimer The information contained in this white paper does not 
constitute an offer to sell or a solicitation of an offer to buy any token. Tylix 

is publishing this whitepaper solely to solicit feedback and comments from 
the public. In the event that Tylix offers any tokens (or future contracts to be 
written) for sale, it will do so by means of a disclosure document and final 

offering documents, including risk factors.  These final documents are 
expected to include an updated version of this white paper, which may 

differ materially from the current version. In the event that Tylix conducts an 
offering in the Republic of Türkiye, it is likely that such offering will be 

available exclusively to accredited investors. It is imperative to note that the 
information provided in this whitepaper should not be construed as a 

guarantee or promise of the performance of Tylix's business or its tokens, 
nor should it be regarded as a guarantee or promise of the utility or value of 

the tokens. This document details the current plans of Tylix, which are 
subject to change at the company's discretion, and the success of these 

plans will depend on many factors, including market-based elements 
beyond Tylix's control and factors in the data and cryptocurrency industries. 

All forward-looking statements are based solely on Tylix's analysis of the 
matters described in this whitepaper. The accuracy of this analysis is not 

guaranteed. 
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Summary 
This paper provides a technical and theoretical discussion of the 

development of Tylix, a system that introduces a new perspective on digital 
assets and financial systems in gaming. The paper describes the 

development of a system using blockchain technology. The paper adopts a 
Blockchain architecture based on Proof of History (PoH), a method of 

verifying the order and passage of time between events. PoH utilizes a data 
structure integrated into a ledger to encode the passage of time, thereby 

ensuring its reliability and security. 

 

 

 

1-Introduction 
A key component of any successful game is the ability to attract and retain 

a strong player base. While game designers and developers prioritize 
adding "fun" to the game to attract more players, our role is to provide a set 

of well-designed tools to ensure that the player experience is optimal. 

As the gaming industry evolves with technological innovations and 
increased digital interactions, traditional payment systems are no longer 

adequate due to slow transaction confirmation times, centralized 
architectures, and security vulnerabilities. In response, Tylix has integrated 

an advanced Proof-of-History (PoH) mechanism that cryptographically 
verifies the chronological order of transactions, providing a decentralized 

and highly reliable infrastructure that is validated in real-time and with high 
efficiency. The PoH mechanism ensures that every transaction is accurately 
and securely timestamped, enhancing system scalability, energy efficiency, 

and security standards. This integration represents a significant 
advancement in the realm of in-game payment processes. 

 



2-Outline 
The remainder of this paper will adhere to the outlined structure. The overall 

system design is described in Section 3. Section 4 provides a 
comprehensive overview of the PoH system. The tokens to be used in the 

games and general information are explained in Section 5. 

 

 

3- General System Design 
Tylix is an ERC-20 standard token that operates on the Ethereum mainnet. It 
will be utilized for in-game payments. The primary reasons for selecting the 
Ethereum network include its decentralization, security, and its role as part 
of a larger ecosystem. Initially, the token will be used for in-game payments, 

but it will transition to NFTs and decentralized governance in the future. 

 

3.1 System Architecture and Layers 
The Tylix is a token configured to run on the Ethereum mainnet. It consists 

of the following layers:  



 

Figure 1: Ethereum Mainnet 

 

3.1.1 Infrastructure Layer 
The Ethereum mainnet (figure 1) creates and validates blocks using the PoS 
(Proof of Stake) mechanism. While this provides a decentralized and secure 

environment, the average block duration and dynamic gas fees directly 
affect the system performance. To address these challenges, Layer 2 

solutions for high-frequency micropayments are under consideration.  

Integration with Optimistic Rollups and zk-Rollups is planned to increase 
transaction throughput while reducing gas costs and alleviating on-chain 

congestion, and interoperability with a secure bridge mechanism for 
seamless data flow between the Ethereum mainnet and Layer 2.  

 

 

 

 

 



3.1.2 Smart Contract Layer  
Tylix provides essential functionalities such as aggregate supply, transfer 
transactions, and balance management in accordance with the ERC-20 

standard, while ensuring the security of its code integrity using 
OpenZeppelin libraries and audited contract modules such as ERC20, 

Pausable, and Ownable for standard compliance. 

A unique hash (generated with keccak 256) is recorded for each 
transaction. This is done with the “recordHistory()” function in the contract. 

An additional precaution is taken against replay attacks by ensuring time 
ordering with checks such as “require(block.timestamp > lastTimestamp)”. 

Considering the storage costs, mapping structure is preferred.  

In addition, the “pausable” mechanism with emergency stop option is used 
against critical situations. With gas optimization and “state freeze” logic, all 
operations are stopped and intervention is possible in unusual situations in 

the system. ERC-20 transfer functions are protected against reentrancy 
attacks with inherent security measures (e.g. Solidity 0.8's auto overflow 

check).  

In the “safeTransfer()” function, additional parameter checks (for example, 
that the address is non-zero) are applied to provide error handling.  

ERC-721/ERC-1155 based NFT integration is planned in the future. 

 

3.1.3 Application and API Layer 
Integration with wallets such as Metamask, Trust Wallet, CoinMarketCap, 
CoinGecko will be listed and recognized on famous exchanges. For game 
developers, API’s that are compatible with libraries such as Web3.js and 

ethers.js will be offered.   

 

 



3.2 Security and Performance Optimizations 
The use of OpenZeppelin libraries, which are audited modules, helps to 

minimize known vulnerabilities. Formal verification processes can be 
applied for critical modules. Functions are safeguarded by state updates 

and the sequential order of external calls. Given that block timestamps are 
under miner control, additional logic checks have been implemented. 

To ensure cost-effectiveness, we prioritize more efficient logging 
mechanisms based on mapping and events, as storing transaction history 

and other logs can lead to high gas fees. 

 

3.2.1 Layer 2 Integration 
Given the high transaction volume on the Ethereum main chain, scalability 

will be ensured with Optimistic Rollups or zk-Rollups. To address the 
transaction fee issues, game-specific sidechains will be utilized for special 

cases. 

 

4-Proof of History  
Proof of History, is a series of calculations that can be used to verify the 

time difference between two events using cryptography. It utilizes 
cryptographically secure functions that are designed so that the output 
cannot be deduced from the input. The function must be executed in its 

entirety to generate the output. The function is executed sequentially on a 
single core, taking its previous output as the current input. It periodically 

records the current output and the number of times it has been called. The 
output can then be recomputed and verified by external computers in 

parallel by checking each sequence segment on a separate core. The array 
can be timestamped by appending the data (or a hash of the data) to the 
state of the function. By recording the state, index, and data as they are 

added to the array, we can ensure that the data was created before the next 
hash is generated in the array. This design also supports horizontal scaling 



because multiple generators can synchronize between each other by  
shuffling their states into each other's arrays. 

 

4.1 Description 
The system is processed using a cryptographically strong hash function 

(e.g. keccak256, sha256, etc.) that yields unpredictable output as follows.  

A random initial value is determined. This value can be, for example, a viral 
news headline or a completely random string.  

Our example initial value:  

“Today the weather in Izmir is clear, the temperature is 23 degrees” 

The selected initial value is given as input to the cryptographic hash 
function. The resulting hash value is again used as input to the same 

function for the next calculation. This process continues sequentially, with 
the output value of the hash function at each step being the input for the 

next step.  At each hash calculation step, the number of function calls 
(index) and the resulting hash value are recorded. This serves as a 

timestamp documenting the correctness and sequentiality of the hash 
chain. Example spreadsheet: 

 

 

 

 

Index Transaction 
Description 

Calculation step Sample Output 
Hash 

1  Assignation of 
the initial value 

to hash 
function 

Keccak256(“Wather in 
Izmir is clear today, with 

a temperature of 23 
degrees.”) 

0xA1B9s08 

2 Utilizing the 
previous hash 

output 

Keccak256(0xA1B9s08) 0xE51903AA 



3 Utilizing the 
hash output of 

the second step 

Keccak256(0xE51903AA) 0x56T2M45O 

100 Utilizing the 
hash obtained 

after 99 
consecutive 
calculations 

Keccak256(hash_99) 0xT2462Hs97 

250 Utilizing the 
hash obtained 

after 249 
consecutive 
calculations 

Keccak256(hash_249) 0x7QER43 

 

Please note that the hash values assigned to the table are for illustrative 
purposes only. In actual calculations, unique and unpredictable values are 

generated depending on the output of the function. 

It is not necessary for all steps in the subsequent process to be published. 
By periodically publishing selected indices and corresponding hash 

outputs, the system can prove the sequentiality and continuity of 
operations. For instance, a concise representation such as the following 

table can be shared: 

Index  Transaction 
Description 

Sample Output Hash 

1 Assignation of the 
initial value to hash 

function 

0x25YSA34G52D 

75 Hash that has been 
calculated after 74. 

step 

0xYU98GID99 

150 Hash that has been 
calculated after 149. 

step 

0x3O4HJ34J3K 

 

 



Given the use of a collision-resistant hash function, it is imperative to 
calculate the hash value iteratively to ensure the integrity of the result. In 

other words, it is not possible to estimate the hash value at index 150 
without running it 150 times. Each computation depends on the previous 

output, making parallel or randomized computations infeasible. This aspect 
of the process is instrumental in determining the elapsed time between 

computations, a crucial metric in real-time applications 

Published hash and index pairs can be verified by monitoring parties. The 
published values are the result of successive calculations from the initial 

value, proving that transactions between two published points occurred in 
real-time. This structure enables the number of transactions since a given 

starting point to serve as a measure of time, as the sequence of each 
calculation in the chain can be tracked without disrupting the order. For 

instance, the difference between index 1 and 250 represents the total time 
spent on calculations within this interval, offering a reliable means to 

objectively document the system's progress over time. 

 

4.2 Timestamp for Events 
This hash array can also be used to record that some pieces of data were 

created before a particular hash index was created. It uses a 'combine' 
function to combine the piece of data with the hash in the current index. 
The data may simply be a cryptographically unique hash of random event 
data. The combine function can be a simple data append or any collision 
resistant operation. The next generated hash represents the timestamp of 

the data, since it could only have been generated after a particular piece of 
data was added. 

For example: 
 

Index  Operation  Output Hash 
1 Sha256(“any randomly 

initialized value”) 
Hash1 

100 Sha256(hash99) Hash100 
300 Sha256(hash299) Hash300 



 

Figure 2: Proof of History sequence 

The system is initialised using an example of a cryptographic hash function 
(e.g. blake2b) that cannot be guessed. A random initial value is set and the 

function continues by taking the output back to the input. 

PoH sequence with data 

Index Operation  Output hash 
1 Blake2b(“random 

initial value”) 
Hash1 

150 Blake2b(hash149) Hash150 
270 Blake2b(hash269) Hash270 

 

At this point an external event occurs. For example, a sensor records some 
instantaneous data and this data is added to the PoH chain. 

  



2-event PoH sequence 

Index Operation Output Hash 
1 Blake2b(“random 

initial value”) 
hash1 

150 Blake2b(hash149) Hash150 
310  Blake2b(hash309) Hash310 
400 Blake2b(hash399) Hash400 
500 Blake2b(hash499) Hash500 
650 Blake2b(hash649) Hash650 
725 Blake2b(hash724) Hash725 

 

Sample Explanations:  
310.hash => Sensor data added  

500.hash => A file (PDF, JSON or any data) has been added with a SHA-256 
hash value. 

725.hash => A transaction record has been included in the chain.  

This system allows any node to verify the sequence and confidently 
determine the time interval in which events occurred. Due to the collision 

resistant nature of the hash function, future hash values cannot be 
predicted. 

The data scrambled into the array can be the raw data itself or a hash of the 
data with accompanying metadata. In the figure below, the entry 

rte8w54q... has been added to the Proof of History index. The number it was 
added to is 6548215454235 and the state it was added to is 

65sdsa35sa694d. All future hashes generated are replaced by this change 
in the array, which is highlighted by the color change in the figure. Each 

node observing this sequence can determine the order in which all events 
were inserted and estimate the actual time between insertions. 



 

Figure3: Inserting data into Proof of History 

 

4.3 Verification 
The validity of the array can be verified by a multi-core computer in a 

fraction of the time it takes to build the array. 

For example:  

Core 1  

Index Data Output hash 
100 Sha256(hash99) Hash100 
200 Sha256(hash199) Hash200 

 

Core 2  

Index Data Output hash 
200 Sha256(hash199) Hash200 
300 Sha256(hash299) Hash300 

 

Given a given number of cores, such as a modern GPU with 4000 cores, the 
verifier can split the hash array and its indexes into 4000 slices and in 



parallel ensure that each slice is correct from the start hash to the last hash 
in the slice. If the expected time to generate the index were as follows:  

 Total number of hashes 

Hash for 1 core per second 

 

 

Figure 4: Validation by using multiple cores 

 The expected time to check that the ranking is correct will be:  
 Total number of hashes 

(Aggregation per second per core * Number of cores available for 
validation) 

 

As in the example in Figure 4, each core can verify each slice of the array in 
parallel. Since all input strings are stored at the output, along with the 

counter and the state to which they are appended, the verifiers can 
replicate each slice in parallel. Yellow hashes indicate that the array has 

been modified by data insertion. 

 

4.4 Horizontal Scaling 
It is possible to synchronise multiple Proof of History generators by merging 

the queue state of each generator into the other generator, thus ensuring 
horizontal scaling of the Proof of History generator. This scaling occurs 



without fragmentation. The output of both generators is required to 
reconstruct the full sequence of events in the system.  

 

Given generators A and B, A receives a data packet from B (hash1b) 
containing the last state of generator B and the last state that generator B 

observed from A. The next state hash in generator A depends on the state of 
generator B, so we can infer that hash1b occurred some time before 

hash3a. This property can be transitive, so if three generators are 
synchronised via a single common generator A, B, C, we can trace the 

dependency between A and C even if they are not directly synchronised.  

By periodically synchronising the generators, each generator can handle a 
portion of the external traffic. This allows the overall system to handle a 
greater number of events, which would otherwise be monitored at the 

expense of real-time accuracy due to network delays between generators. 
Global ordering can still be achieved by choosing a deterministic function, 

such as the hash value itself, to order the events within the synchronisation 
window.  

The two generators in Figure 5 add each other’s output state and record the 
operation. The colour change indicates taht data from the other has 

changed the sequence The generated hashes mixed into eacj stream are 
hlighlighted in bold. Synchronisation is transitive. There is a sequence in 

which events between A and C can be made avbailable A B C via A B B. In 
this way, sacaling occurs at the expense of availability. 10 x 1 Gbps links 

with 0.999 availability will have 0.99910 = 0.99 availability.   



4.5 Availability 
Users are expected to be able to enforce the consistency of the generated 
sequence and make it resistant to attack by adding to their input the last 

observed output of the sequence they consider valid. 

 

Figure5: Synchronisation of two generators 

 

 

If a malicious PoH generator can access all the events at once, or generate 
a faster hash, it will also generate a second hash containing the events in 
reverse order. To prevent this attack, each event generated by the client 
must contain the last hash that the client observed from what the client 
considers to be a valid array. So when a client generates "Event1" data, it 

must include the last hash it observed.  

 

 

PoH A Sequence 



Index Data Output Hash 
10  Hash10a 
20 Event1 = 

append(event1 data, 
hash10a) 

Hash20a 

30 Event2 = 
append(event2 data, 

hash20a) 

Hash30a 

40 Event3 = 
append(event3 data, 

hash30a) 

Hash40a 

 

When the sequence is sent, event3 references hash30a, and if it was not in 
the sequence before this event, the consumers of the sequence will know 

that it is an invalid sequence. The partial reordering attack is then limited to 
the number of hashes generated when the client observes an event and 
when the event is inserted. Clients should then be able to write software 
that does not assume the sequence is correct for the short hash period 

between the last observed and inserted hash. To prevent a malicious PoH 
generator from rewriting client event hashes, clients can send a signature of 

the event data and the last observed hash instead of just the data. 

 

PoH A Sequence 

Index Data  Output Hash 
10  Hash10a 
20 Event1 = 

sign(append(event1 
data, hash10a), Client 

Private Key) 

Hash20a 

30 Event2 = 
sign(append(event2 

data, hash20a), Client 
Private Key) 

Hash30a  

40 Event3 = 
sign(append(event3 

Hash40a 



data, hash30a), Client 
Private Key) 

 

Verification of this data requires signature verification and a search for the 
hash in the preceding hash sequence..  

For validation: 

(Signature, PublicKey, hash30a, event3 data) = Event3 Verify(Signature, 
PublicKey, Event3) Lookup(hash30a, PoHSequence) 

 

Figure6: Back referenced input. 

In Figure 6, the input provided by the user depends on the hash 0xsd4sa... 
which exists in the generated array some time before it is added. The blue 
arrow in the top left-hand corner indicates that the client is referencing a 
previously generated hash. The client's message is only valid on an array 

containing the hash 0xsd4sa...... The red colour in the array indicates that 
the array has been modified by client data. 

 



4.7 Attacks  
 

4.7.1 Reversal  
Creating a reverse order requires an attacker to start the malicious 

sequence after the second event. This delay is to allow any non-malicious 
peer-to-peer nodes to communicate about the original sequence. 

 

4.7.2 Speed 
Having multiple generators can make the deployment more resilient to 

attack. One generator can be high bandwidth and take many events to mix 
in its queue. Another generator can be a high-speed, low-bandwidth 

generator that periodically mixes with the high-bandwidth generator. The 
high-speed sequence creates a second sequence of data that an attacker 

must reverse. 

 

4.7.3 Long Ranged Attacks 
Long-range attacks include obtaining old, discarded client private keys and 

creating a fake ledger. Proof of history provides some protection against 
remote attacks. A malicious user who gains access to old private keys must 

recreate a history record that takes as long as the original record they are 
trying to forge. This requires access to a faster processor than the network 
is currently using, otherwise the attacker will never be able to capture the 
length of the history. In addition, a single time source allows for a simpler 

Proof of Replication. Since the network is signed in such a way that all 
participants in the network trust a single historical event record, PoRep and 
PoH together should provide both space and time defences against a forged 

ledger. 

 

 

 



5-Games and Tokens  
 

5.1 Introduction: Evolution of Games Economy 
The game industry is undergoing a major transformation. Whereas in-game 
assets used to be limited to that game, blockchain technology now allows 

players to actually own the digital assets they earn. But this shift is far 
from complete. Most games still use closed-economy models and do not 

offer real ownership to players. 

This is where Tylix comes in. Our goal is to provide players with a 
decentralised, secure and portable in-game economy. We are building a 

complete in-game economy not just limited to in-game coins, but 
supported by NFTs, staking mechanisms and DAO governance. 

 

5.2 Initiate with Game Mechanics  
Game mechanics determine how assets are used in and out of the game, 
the response rate required from the blockchain and ultimately the type of 
connection required. The first step in choosing a connection is to answer 

the question  “What mechanics will my game include?”  

Let’s look at a few examples of how different mechanics work with different 
connections. 

A read-only connection is sufficient for simple game mechanics that 
require only one-way between the game and the Blockchain. For example, 

looking at the cards in a player's inventory, or checking the costumes a 
player has for a particular character. Reading and writing is more 

convenient when the game mechanics require certain information to be 
loaded into the blockchain at certain times or with low frequency. For 

example, winning an in-game tournament can add new cards to the wallet 
of the top 10 players. 



If your game relies on complex, unpredictable, high-frequency game 
mechanics, then a read-write constant would be the best. For example, if 
you have created an open-world game where card trading is a mini-game 

within the game world; here the gameplay depends on the frequent, 
unpredictable replacement or addition of the player's assets. Link types 

can be applied to each mechanic individually (for example, in an FPS game 
you can put skins on the blockchain, but you can decide not to put every 

bullet on the blockchain). 

 

5.3 Why Should You Make Your In-Game Tokens On-
Chain? 

On-chain in-game coins incentivise ownership of real assets, as the key 
differentiator in web3 gaming. On-chain assets can participate in 

transparent, engaging game economies driven by smart contracts. While 
using an on-chain token (such as ERC-20 or ERC-1155) for your in-game 

coins adds complexity, the potential benefits may outweigh the additional 
effort. Tylix recommends considering at least one on-chain token for your 

game, provided your team has the right skills, including expertise in 
economy management and consumer marketing. 

The benefits of using an on-chain token as your in-game coins are: 

Automatic Balance Management: Balances are processed automatically 
and require no additional effort. 

True Asset Ownership: Players fully own the asset both in and out of the 
game. 

Reduced Double Spend Risk: All transactions are immutable, reducing the 
risk of double-spending. 

Guaranteed Transactions: Trades are atomic, meaning that if any part of the 
trade fails, the entire trade is stopped. 

Incentivize Development: Tokens can be used to incentivize developers and 
creators to build on top of your game. 



Using on-chain tokens can create a more robust and engaging game 
economy, but it is important to balance these benefits against the added 

complexity they introduce. 


