
Tylix: The Next Generation of
Gaming Payment System

Samet Yusuf İÇGEN
https://tylix.io/#

Disclaimer The information contained in this white paper does not
constitute an offer to sell or a solicitation of an offer to buy any token. Tylix

is publishing this whitepaper solely to solicit feedback and comments from
the public. In the event that Tylix offers any tokens (or future contracts to be
written) for sale, it will do so by means of a disclosure document and final

offering documents, including risk factors. These final documents are
expected to include an updated version of this white paper, which may

differ materially from the current version. In the event that Tylix conducts an
offering in the Republic of Türkiye, it is likely that such offering will be

available exclusively to accredited investors. It is imperative to note that the
information provided in this whitepaper should not be construed as a

guarantee or promise of the performance of Tylix's business or its tokens,
nor should it be regarded as a guarantee or promise of the utility or value of

the tokens. This document details the current plans of Tylix, which are
subject to change at the company's discretion, and the success of these

plans will depend on many factors, including market-based elements
beyond Tylix's control and factors in the data and cryptocurrency industries.

All forward-looking statements are based solely on Tylix's analysis of the
matters described in this whitepaper. The accuracy of this analysis is not

guaranteed.

https://tylixusdt.io/

Summary
This paper provides a technical and theoretical discussion of the

development of Tylix, a system that introduces a new perspective on digital
assets and financial systems in gaming. The paper describes the

development of a system using blockchain technology. The paper adopts a
Blockchain architecture based on Proof of History (PoH), a method of

verifying the order and passage of time between events. PoH utilizes a data
structure integrated into a ledger to encode the passage of time, thereby

ensuring its reliability and security.

1-Introduction
A key component of any successful game is the ability to attract and retain

a strong player base. While game designers and developers prioritize
adding "fun" to the game to attract more players, our role is to provide a set

of well-designed tools to ensure that the player experience is optimal.

As the gaming industry evolves with technological innovations and
increased digital interactions, traditional payment systems are no longer

adequate due to slow transaction confirmation times, centralized
architectures, and security vulnerabilities. In response, Tylix has integrated

an advanced Proof-of-History (PoH) mechanism that cryptographically
verifies the chronological order of transactions, providing a decentralized

and highly reliable infrastructure that is validated in real-time and with high
efficiency. The PoH mechanism ensures that every transaction is accurately
and securely timestamped, enhancing system scalability, energy efficiency,

and security standards. This integration represents a significant
advancement in the realm of in-game payment processes.

2-Outline
The remainder of this paper will adhere to the outlined structure. The overall

system design is described in Section 3. Section 4 provides a
comprehensive overview of the PoH system. The tokens to be used in the

games and general information are explained in Section 5.

3- General System Design
Tylix is an ERC-20 standard token that operates on the Ethereum mainnet. It
will be utilized for in-game payments. The primary reasons for selecting the
Ethereum network include its decentralization, security, and its role as part
of a larger ecosystem. Initially, the token will be used for in-game payments,

but it will transition to NFTs and decentralized governance in the future.

3.1 System Architecture and Layers
The Tylix is a token configured to run on the Ethereum mainnet. It consists

of the following layers:

Figure 1: Ethereum Mainnet

3.1.1 Infrastructure Layer
The Ethereum mainnet (figure 1) creates and validates blocks using the PoS
(Proof of Stake) mechanism. While this provides a decentralized and secure

environment, the average block duration and dynamic gas fees directly
affect the system performance. To address these challenges, Layer 2

solutions for high-frequency micropayments are under consideration.

Integration with Optimistic Rollups and zk-Rollups is planned to increase
transaction throughput while reducing gas costs and alleviating on-chain

congestion, and interoperability with a secure bridge mechanism for
seamless data flow between the Ethereum mainnet and Layer 2.

3.1.2 Smart Contract Layer
Tylix provides essential functionalities such as aggregate supply, transfer
transactions, and balance management in accordance with the ERC-20

standard, while ensuring the security of its code integrity using
OpenZeppelin libraries and audited contract modules such as ERC20,

Pausable, and Ownable for standard compliance.

A unique hash (generated with keccak 256) is recorded for each
transaction. This is done with the “recordHistory()” function in the contract.

An additional precaution is taken against replay attacks by ensuring time
ordering with checks such as “require(block.timestamp > lastTimestamp)”.

Considering the storage costs, mapping structure is preferred.

In addition, the “pausable” mechanism with emergency stop option is used
against critical situations. With gas optimization and “state freeze” logic, all
operations are stopped and intervention is possible in unusual situations in

the system. ERC-20 transfer functions are protected against reentrancy
attacks with inherent security measures (e.g. Solidity 0.8's auto overflow

check).

In the “safeTransfer()” function, additional parameter checks (for example,
that the address is non-zero) are applied to provide error handling.

ERC-721/ERC-1155 based NFT integration is planned in the future.

3.1.3 Application and API Layer
Integration with wallets such as Metamask, Trust Wallet, CoinMarketCap,
CoinGecko will be listed and recognized on famous exchanges. For game
developers, API’s that are compatible with libraries such as Web3.js and

ethers.js will be offered.

3.2 Security and Performance Optimizations
The use of OpenZeppelin libraries, which are audited modules, helps to

minimize known vulnerabilities. Formal verification processes can be
applied for critical modules. Functions are safeguarded by state updates

and the sequential order of external calls. Given that block timestamps are
under miner control, additional logic checks have been implemented.

To ensure cost-effectiveness, we prioritize more efficient logging
mechanisms based on mapping and events, as storing transaction history

and other logs can lead to high gas fees.

3.2.1 Layer 2 Integration
Given the high transaction volume on the Ethereum main chain, scalability

will be ensured with Optimistic Rollups or zk-Rollups. To address the
transaction fee issues, game-specific sidechains will be utilized for special

cases.

4-Proof of History
Proof of History, is a series of calculations that can be used to verify the

time difference between two events using cryptography. It utilizes
cryptographically secure functions that are designed so that the output
cannot be deduced from the input. The function must be executed in its

entirety to generate the output. The function is executed sequentially on a
single core, taking its previous output as the current input. It periodically

records the current output and the number of times it has been called. The
output can then be recomputed and verified by external computers in

parallel by checking each sequence segment on a separate core. The array
can be timestamped by appending the data (or a hash of the data) to the
state of the function. By recording the state, index, and data as they are

added to the array, we can ensure that the data was created before the next
hash is generated in the array. This design also supports horizontal scaling

because multiple generators can synchronize between each other by
shuffling their states into each other's arrays.

4.1 Description
The system is processed using a cryptographically strong hash function

(e.g. keccak256, sha256, etc.) that yields unpredictable output as follows.

A random initial value is determined. This value can be, for example, a viral
news headline or a completely random string.

Our example initial value:

“Today the weather in Izmir is clear, the temperature is 23 degrees”

The selected initial value is given as input to the cryptographic hash
function. The resulting hash value is again used as input to the same

function for the next calculation. This process continues sequentially, with
the output value of the hash function at each step being the input for the

next step. At each hash calculation step, the number of function calls
(index) and the resulting hash value are recorded. This serves as a

timestamp documenting the correctness and sequentiality of the hash
chain. Example spreadsheet:

Index Transaction
Description

Calculation step Sample Output
Hash

1 Assignation of
the initial value

to hash
function

Keccak256(“Wather in
Izmir is clear today, with

a temperature of 23
degrees.”)

0xA1B9s08

2 Utilizing the
previous hash

output

Keccak256(0xA1B9s08) 0xE51903AA

3 Utilizing the
hash output of

the second step

Keccak256(0xE51903AA) 0x56T2M45O

100 Utilizing the
hash obtained

after 99
consecutive
calculations

Keccak256(hash_99) 0xT2462Hs97

250 Utilizing the
hash obtained

after 249
consecutive
calculations

Keccak256(hash_249) 0x7QER43

Please note that the hash values assigned to the table are for illustrative
purposes only. In actual calculations, unique and unpredictable values are

generated depending on the output of the function.

It is not necessary for all steps in the subsequent process to be published.
By periodically publishing selected indices and corresponding hash

outputs, the system can prove the sequentiality and continuity of
operations. For instance, a concise representation such as the following

table can be shared:

Index Transaction
Description

Sample Output Hash

1 Assignation of the
initial value to hash

function

0x25YSA34G52D

75 Hash that has been
calculated after 74.

step

0xYU98GID99

150 Hash that has been
calculated after 149.

step

0x3O4HJ34J3K

Given the use of a collision-resistant hash function, it is imperative to
calculate the hash value iteratively to ensure the integrity of the result. In

other words, it is not possible to estimate the hash value at index 150
without running it 150 times. Each computation depends on the previous

output, making parallel or randomized computations infeasible. This aspect
of the process is instrumental in determining the elapsed time between

computations, a crucial metric in real-time applications

Published hash and index pairs can be verified by monitoring parties. The
published values are the result of successive calculations from the initial

value, proving that transactions between two published points occurred in
real-time. This structure enables the number of transactions since a given

starting point to serve as a measure of time, as the sequence of each
calculation in the chain can be tracked without disrupting the order. For

instance, the difference between index 1 and 250 represents the total time
spent on calculations within this interval, offering a reliable means to

objectively document the system's progress over time.

4.2 Timestamp for Events
This hash array can also be used to record that some pieces of data were

created before a particular hash index was created. It uses a 'combine'
function to combine the piece of data with the hash in the current index.
The data may simply be a cryptographically unique hash of random event
data. The combine function can be a simple data append or any collision
resistant operation. The next generated hash represents the timestamp of

the data, since it could only have been generated after a particular piece of
data was added.

For example:

Index Operation Output Hash
1 Sha256(“any randomly

initialized value”)
Hash1

100 Sha256(hash99) Hash100
300 Sha256(hash299) Hash300

Figure 2: Proof of History sequence

The system is initialised using an example of a cryptographic hash function
(e.g. blake2b) that cannot be guessed. A random initial value is set and the

function continues by taking the output back to the input.

PoH sequence with data

Index Operation Output hash
1 Blake2b(“random

initial value”)
Hash1

150 Blake2b(hash149) Hash150
270 Blake2b(hash269) Hash270

At this point an external event occurs. For example, a sensor records some
instantaneous data and this data is added to the PoH chain.

2-event PoH sequence

Index Operation Output Hash
1 Blake2b(“random

initial value”)
hash1

150 Blake2b(hash149) Hash150
310 Blake2b(hash309) Hash310
400 Blake2b(hash399) Hash400
500 Blake2b(hash499) Hash500
650 Blake2b(hash649) Hash650
725 Blake2b(hash724) Hash725

Sample Explanations:
310.hash => Sensor data added

500.hash => A file (PDF, JSON or any data) has been added with a SHA-256
hash value.

725.hash => A transaction record has been included in the chain.

This system allows any node to verify the sequence and confidently
determine the time interval in which events occurred. Due to the collision

resistant nature of the hash function, future hash values cannot be
predicted.

The data scrambled into the array can be the raw data itself or a hash of the
data with accompanying metadata. In the figure below, the entry

rte8w54q... has been added to the Proof of History index. The number it was
added to is 6548215454235 and the state it was added to is

65sdsa35sa694d. All future hashes generated are replaced by this change
in the array, which is highlighted by the color change in the figure. Each

node observing this sequence can determine the order in which all events
were inserted and estimate the actual time between insertions.

Figure3: Inserting data into Proof of History

4.3 Verification
The validity of the array can be verified by a multi-core computer in a

fraction of the time it takes to build the array.

For example:

Core 1

Index Data Output hash
100 Sha256(hash99) Hash100
200 Sha256(hash199) Hash200

Core 2

Index Data Output hash
200 Sha256(hash199) Hash200
300 Sha256(hash299) Hash300

Given a given number of cores, such as a modern GPU with 4000 cores, the
verifier can split the hash array and its indexes into 4000 slices and in

parallel ensure that each slice is correct from the start hash to the last hash
in the slice. If the expected time to generate the index were as follows:

 Total number of hashes

Hash for 1 core per second

Figure 4: Validation by using multiple cores

 The expected time to check that the ranking is correct will be:
 Total number of hashes

(Aggregation per second per core * Number of cores available for
validation)

As in the example in Figure 4, each core can verify each slice of the array in
parallel. Since all input strings are stored at the output, along with the

counter and the state to which they are appended, the verifiers can
replicate each slice in parallel. Yellow hashes indicate that the array has

been modified by data insertion.

4.4 Horizontal Scaling
It is possible to synchronise multiple Proof of History generators by merging

the queue state of each generator into the other generator, thus ensuring
horizontal scaling of the Proof of History generator. This scaling occurs

without fragmentation. The output of both generators is required to
reconstruct the full sequence of events in the system.

Given generators A and B, A receives a data packet from B (hash1b)
containing the last state of generator B and the last state that generator B

observed from A. The next state hash in generator A depends on the state of
generator B, so we can infer that hash1b occurred some time before

hash3a. This property can be transitive, so if three generators are
synchronised via a single common generator A, B, C, we can trace the

dependency between A and C even if they are not directly synchronised.

By periodically synchronising the generators, each generator can handle a
portion of the external traffic. This allows the overall system to handle a
greater number of events, which would otherwise be monitored at the

expense of real-time accuracy due to network delays between generators.
Global ordering can still be achieved by choosing a deterministic function,

such as the hash value itself, to order the events within the synchronisation
window.

The two generators in Figure 5 add each other’s output state and record the
operation. The colour change indicates taht data from the other has

changed the sequence The generated hashes mixed into eacj stream are
hlighlighted in bold. Synchronisation is transitive. There is a sequence in

which events between A and C can be made avbailable A B C via A B B. In
this way, sacaling occurs at the expense of availability. 10 x 1 Gbps links

with 0.999 availability will have 0.99910 = 0.99 availability.

4.5 Availability
Users are expected to be able to enforce the consistency of the generated
sequence and make it resistant to attack by adding to their input the last

observed output of the sequence they consider valid.

Figure5: Synchronisation of two generators

If a malicious PoH generator can access all the events at once, or generate
a faster hash, it will also generate a second hash containing the events in
reverse order. To prevent this attack, each event generated by the client
must contain the last hash that the client observed from what the client
considers to be a valid array. So when a client generates "Event1" data, it

must include the last hash it observed.

PoH A Sequence

Index Data Output Hash
10 Hash10a
20 Event1 =

append(event1 data,
hash10a)

Hash20a

30 Event2 =
append(event2 data,

hash20a)

Hash30a

40 Event3 =
append(event3 data,

hash30a)

Hash40a

When the sequence is sent, event3 references hash30a, and if it was not in
the sequence before this event, the consumers of the sequence will know

that it is an invalid sequence. The partial reordering attack is then limited to
the number of hashes generated when the client observes an event and
when the event is inserted. Clients should then be able to write software
that does not assume the sequence is correct for the short hash period

between the last observed and inserted hash. To prevent a malicious PoH
generator from rewriting client event hashes, clients can send a signature of

the event data and the last observed hash instead of just the data.

PoH A Sequence

Index Data Output Hash
10 Hash10a
20 Event1 =

sign(append(event1
data, hash10a), Client

Private Key)

Hash20a

30 Event2 =
sign(append(event2

data, hash20a), Client
Private Key)

Hash30a

40 Event3 =
sign(append(event3

Hash40a

data, hash30a), Client
Private Key)

Verification of this data requires signature verification and a search for the
hash in the preceding hash sequence..

For validation:

(Signature, PublicKey, hash30a, event3 data) = Event3 Verify(Signature,
PublicKey, Event3) Lookup(hash30a, PoHSequence)

Figure6: Back referenced input.

In Figure 6, the input provided by the user depends on the hash 0xsd4sa...
which exists in the generated array some time before it is added. The blue
arrow in the top left-hand corner indicates that the client is referencing a
previously generated hash. The client's message is only valid on an array

containing the hash 0xsd4sa...... The red colour in the array indicates that
the array has been modified by client data.

4.7 Attacks

4.7.1 Reversal
Creating a reverse order requires an attacker to start the malicious

sequence after the second event. This delay is to allow any non-malicious
peer-to-peer nodes to communicate about the original sequence.

4.7.2 Speed
Having multiple generators can make the deployment more resilient to

attack. One generator can be high bandwidth and take many events to mix
in its queue. Another generator can be a high-speed, low-bandwidth

generator that periodically mixes with the high-bandwidth generator. The
high-speed sequence creates a second sequence of data that an attacker

must reverse.

4.7.3 Long Ranged Attacks
Long-range attacks include obtaining old, discarded client private keys and

creating a fake ledger. Proof of history provides some protection against
remote attacks. A malicious user who gains access to old private keys must

recreate a history record that takes as long as the original record they are
trying to forge. This requires access to a faster processor than the network
is currently using, otherwise the attacker will never be able to capture the
length of the history. In addition, a single time source allows for a simpler

Proof of Replication. Since the network is signed in such a way that all
participants in the network trust a single historical event record, PoRep and
PoH together should provide both space and time defences against a forged

ledger.

5-Games and Tokens

5.1 Introduction: Evolution of Games Economy
The game industry is undergoing a major transformation. Whereas in-game
assets used to be limited to that game, blockchain technology now allows

players to actually own the digital assets they earn. But this shift is far
from complete. Most games still use closed-economy models and do not

offer real ownership to players.

This is where Tylix comes in. Our goal is to provide players with a
decentralised, secure and portable in-game economy. We are building a

complete in-game economy not just limited to in-game coins, but
supported by NFTs, staking mechanisms and DAO governance.

5.2 Initiate with Game Mechanics
Game mechanics determine how assets are used in and out of the game,
the response rate required from the blockchain and ultimately the type of
connection required. The first step in choosing a connection is to answer

the question “What mechanics will my game include?”

Let’s look at a few examples of how different mechanics work with different
connections.

A read-only connection is sufficient for simple game mechanics that
require only one-way between the game and the Blockchain. For example,

looking at the cards in a player's inventory, or checking the costumes a
player has for a particular character. Reading and writing is more

convenient when the game mechanics require certain information to be
loaded into the blockchain at certain times or with low frequency. For

example, winning an in-game tournament can add new cards to the wallet
of the top 10 players.

If your game relies on complex, unpredictable, high-frequency game
mechanics, then a read-write constant would be the best. For example, if
you have created an open-world game where card trading is a mini-game

within the game world; here the gameplay depends on the frequent,
unpredictable replacement or addition of the player's assets. Link types

can be applied to each mechanic individually (for example, in an FPS game
you can put skins on the blockchain, but you can decide not to put every

bullet on the blockchain).

5.3 Why Should You Make Your In-Game Tokens On-
Chain?

On-chain in-game coins incentivise ownership of real assets, as the key
differentiator in web3 gaming. On-chain assets can participate in

transparent, engaging game economies driven by smart contracts. While
using an on-chain token (such as ERC-20 or ERC-1155) for your in-game

coins adds complexity, the potential benefits may outweigh the additional
effort. Tylix recommends considering at least one on-chain token for your

game, provided your team has the right skills, including expertise in
economy management and consumer marketing.

The benefits of using an on-chain token as your in-game coins are:

Automatic Balance Management: Balances are processed automatically
and require no additional effort.

True Asset Ownership: Players fully own the asset both in and out of the
game.

Reduced Double Spend Risk: All transactions are immutable, reducing the
risk of double-spending.

Guaranteed Transactions: Trades are atomic, meaning that if any part of the
trade fails, the entire trade is stopped.

Incentivize Development: Tokens can be used to incentivize developers and
creators to build on top of your game.

Using on-chain tokens can create a more robust and engaging game
economy, but it is important to balance these benefits against the added

complexity they introduce.

